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Status quo:

• land-cover maps of spatially and 

thematically low resolution

• Sentinel-2 offers new possibilities towards 

a plot based classification down to species 

level

Arable land

Grassland

Fruit plant.

Forest Water bodies

Urban

Agriculture (1961-1999)

Increase of 106% of overall food 

crop yield per unit area

12% increase in cropland

10% rise in permanent pasture

97% rise in irrigated land

638%, 203%, and 854% increase, in the use of 

fertilizers, pesticides, herbicides
Foley et al. (2005) Nature

Green (2005) Science 

Haberl et al. (2007) PNAS

Available spatial information

Source: ATKIS 2015, Federal Agency for Cartography and Geodesy, Area Leipzig-Halle



• Sentinel-2 satellite data

• Spatial resolution: 10/20 m

• Spectral resolution: 13 bands (9 bands at 20 m)

• Global repetition rate: 5 days, Germany 2-3 days

• Vegetation Monitoring, Phenology

• Masking of clouds

• Big Data

• Sentinel-2 archive is kept up-to-date at UFZ

• Data processing at UFZ or prospective in Jülich

(Spectral) data base

Sentinel 2 a CIR image, 30th of August 2016
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• Automised and purely data-

driven approach to best capture 

crop phenology

• Satellite data is composited at 

flexible time intervals based on 

cloud-cover and training data

• Derivation of model 

uncertainties

Adaptable pixel-based compositing and classification

Preidl, S., Lange, M., Doktor, D. (2019). Introducing APiC for regionalised land-cover mapping on the 

national scale using Sentinel-2A imagery. REMOTE SENSING OF ENVIRONMENT (accepted)

• Germany divided into 6 bio-

geographical regions similar in 

plant phenology for 

regionalised classification

• InVeKoS data for training & 

validation
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Land-use classification – cloud cover



15 t

Land-use classification – pixel-based compositing
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• 19 crop types incl. grassland 

could be classified

• Field parcels clearly identifiable

• Difference in plot size and 

cultivated crop between 

regions

Classified crop types and grassland

Preidl, S., Lange, M., Doktor, D. (2019). Introducing APiC for 

regionalised land-cover mapping on the national scale using Sentinel-

2A imagery. REMOTE SENSING OF ENVIRONMENT (accepted)

http://ufz.maps.arcgis.com/apps/Styler/index.html?appid=84a

36f4e815e4aa88f38a6d0f8382590

http://ufz.maps.arcgis.com/apps/Styler/index.html?appid=84a36f4e815e4aa88f38a6d0f8382590
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Classification accuracy

• Overall accuracy of 87 %

• Main crop types (winter wheat, 

maize and raps) over 90 %

• Small classes & small field sizes 

less well classified

Preidl, S., Lange, M., Doktor, D. (2019). Introducing APiC for regionalised land-cover 

mapping on the national scale using Sentinel-2A imagery. REMOTE SENSING OF 

ENVIRONMENT (accepted)
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• Pixel-wise prediction error which 

can be associated with 

classification

• Clear regional differences based 

on satellite data and InVeKoS 

data availability

• Even single clouds in satellite 

time series are exhibited as 

increased prediction error

Classification performance

Preidl, S., Lange, M., Doktor, D. (2019). Introducing APiC for regionalised land-cover mapping on the national scale using Sentinel-2A 

imagery. REMOTE SENSING OF ENVIRONMENT (accepted)
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Coming-up: Tree species classification

• The methodology presented can 

be translated to classify tree 

species: BfN-project “Wakanaka”
• (https://forschung-sachsen-

anhalt.de/project/wakanaka-ermittlung-

naturschutzbezogener-20953)

• Local forest inventories are used 

for training / validation

• Robust differentiation of 4 

deciduous and 4 conifer tree 

species

Kyffhäuser, Harz mountains and Elm (South to North)



Ripeness / Senescence, Sachsen, Chemnitz
Year 2018
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Day of Year

Many crops already ripe/senescent 

in June due to warm temperatures 

/ drought



Ripeness / Senescence, Sachsen, Chemnitz
Year 2017
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Day of Year

Later ripeness/senescence in 2017 

due to average weather patterns



Matching satellite products and ground observations
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Good match between satellite derived 

phenology and ground obsverations 

despite sparse ground network and high 

intra-field variability
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Land-use intensity of grasslands

Intensity measures

 Mowing frequency

 Livestock density

 Fertiliser amount



15www.ufz.de

Data
Overview

 7 pastures/meadows in central Germany

 Data includes:

 Mowing dates

 Fertilisation type, amount and dates

 Livestock number
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Methodology 
Land-use intensity metrics (from EVI evolution)

Mowing

 Number of rapid decrease events

 First decrease event related to number of mowing 

events?

Fertilisation

 Number of rapid increase events

 Statistical values: mean, trend

Livestock 

(Grazing and droppings) 

 Statistical values: variance, mean, trend

 Number of decrease/increase events

 Sum of index increase or decrease

Source: UFZ Department CHS

Source: Westdeutsche Zeitung 2018, 

www.wz.de
Source: BauernZeitung.at 2016

Source: br.de, picture-alliance/dpa 

2018
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First results
(GLM) Modelling of land-use intensity
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Metrics

Date of first decrease event

Number of decrease events

Variance (NDVI)

Sum of index increase

Index mean (EVI)

Index intra-year trend (EVI)

 …
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First results
Modelling of land-use intensity

Image Source: Google Earth (2019/04)

Non-linear interactions 

(between mowing 

frequency and livestock 

density) hamper 

prediction.
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Methodology
Supervised classification

 Training / Validation

20% / 80%

Supervised machine 

learning methods 

facilitate almost perfect 

prediction.
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Supervised classification
“Extrapolation“

Image Source: Google Earth (2019/04)

Extrapolation possible, but 

too few validation data yet 

available for robust 

evaluation of method.
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Extrapolation: Method comparison
Livestock density comparison

Allgäu Leipzig Nordfriesland

[cows/day/hectar][cows/day/hectar][cows/day/hectar]
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Extrapolation: Method comparison
Grassland at Wadden sea

Metric: Number of NDVI decreases

Land-use intensity classificationModelled livestock density

Image Source: Google Earth (2019/08)


