

UFZ's remote sensing based land-cover/use mapping activities

Leipzig, iDiv, 15.01.2020 sMon workshop

Daniel Doktor Sebastian Preidl Maximilian Lange

Andreas Schmidt

Group leader, Prinicipal Investigator, daniel.doktor@ufz.de

Methods for data compositing and classification, sebastian.preidl@ufz.de Processing, phenology + intensity derivation, maximilian.lange@ufz.de Co-registration of satellite time series, andreasdd.schmidt@ufz.de

Available spatial information

Status quo:

- land-cover maps of spatially and thematically low resolution
- Sentinel-2 offers new possibilities towards a plot based classification down to species level

Agriculture (1961-1999)

Increase of 106% of overall food crop yield per unit area 12% increase in cropland 10% rise in permanent pasture 97% rise in irrigated land 638%, 203%, and 854% increase, in the use of fertilizers, pesticides, herbicides

Foley et al. (2005) Nature Green (2005) Science Haberl et al. (2007) PNAS

(Spectral) data base

- Sentinel-2 satellite data
- Spatial resolution: 10/20 m
- Spectral resolution: 13 bands (9 bands at 20 m)
- Global repetition rate: 5 days, Germany 2-3 days
- Vegetation Monitoring, Phenology
- Masking of clouds
- . Big Data

- Sentinel-2 archive is kept up-to-date at UFZ
- Data processing at UFZ or prospective in Jülich

Sentinel 2 a CIR image, 30th of August 2016

Adaptable pixel-based compositing and classification

- Automised and purely datadriven approach to best capture crop phenology
- Satellite data is composited at flexible time intervals based on cloud-cover and training data
- Derivation of model uncertainties

- Germany divided into 6 biogeographical regions similar in plant phenology for regionalised classification
- InVeKoS data for training & validation

Preidl, S., Lange, M., Doktor, D. (2019). Introducing APiC for regionalised land-cover mapping on the national scale using Sentinel-2A imagery. REMOTE SENSING OF ENVIRONMENT (accepted)

Land-use classification – cloud cover

Land-use classification – pixel-based compositing

Classified crop types and grassland

- 19 crop types incl. grassland could be classified
- cultivated crop between regions

Field parcels clearly identifiable Difference in plot size and http://ufz.maps.arcgis.com/apps/Styler/index.html?appid=84a 36f4e815e4aa88f38a6d0f8382590 Winter Rye Legumes Stone fruits Rapeseed Other Vegetation Winter barley Vines regionalised land-cover mapping on the national scale using Sentinel-Spring wheat Waters Leeks Hops Spring barley **Urban Area** Potatoes Courtesy of Sebastian Preidl / UFZ Spring oat

Maize

Strawberries

Spelt

Preidl, S., Lange, M., Doktor, D. (2019). Introducing APiC for 2A imagery. REMOTE SENSING OF ENVIRONMENT (accepted)

Classification accuracy

- Overall accuracy of 87 %
- Main crop types (winter wheat, maize and raps) over 90 %
- Small classes & small field sizes less well classified

	Alpine Foreland		SW-Uplands		W-Uplands		E-Uplands		NE-Lowlands		NW-Lowlands	
Land-Use Classes	PA	UA	PA	UA	PA	UA	PA	UA	PA	UA	PA	UA
Winter wheat	92.95	89.68	91.35	88.55	89.84	86.69	90.90	89.99	89.73	79.80	88.69	84.11
Spelt			26.63	77.83	22.40	30.49	16.81	70.87	33.05	71.59	28.63	38.25
Winter Rye			43.74	73.37	17.71	45.66	14.76	72.45	64.16	78.23	38.09	78,33
Winter barley	74.62	84.73	77.04	80.99	72.07	87.03	79.52	81.42	63.99	90.78	74.98	79.63
Spring wheat					18.37	23.73	14.90	75.01	40.29	32.87	12.51	28.54
Spring barley	56.96	87.15	82.88	82.66	59.20	62.75	84.42	75,00	49.81	55.17	51.29	61.16
Spring oat			50.04	64.91	45.19	33.45	39.50	57.36	31.22	40.60	33.27	26.69
Maize	90.54	91.02	87.23	90.58	89.65	94.33	93.87	95.85	94.45	92.08	95,53	94.48
Legumes			71.18	75.82	59.87	62.83	67.36	81.55	73.41	69.27	56.69	45.58
Rapeseed	74.57	86.85	91.64	93,07	92.61	93.22	95.65	96.27	94.24	98.48	91.04	96.47
Leeks			64.55	60.46					76.21	25.21	50.57	43.18
Potatoes	93.57	95.35	74.82	79.18	72,67	56.37	67.82	66.86	53.16	71.56	78.53	84.71
Sugar beets	93.19	96.29	93.06	91.20	91.57	89.28	87.43	91.60	85.14	88.53	83.42	94.31
Strawberries			55.60	48.29	75.57	21.90			56.27	13.90	56.88	36.88
Stone fruits	52.30	83.01	29.21	74,97	44.11	35.01	31.95	87.30	34.16	82.56	63.20	64.30
Vines			94.73	91.89	81.51	62.34						
Нор	78.12	93.31										
Asparagus			63.20	64.23					46.04	43.67	38.73	44.01
Grassland	96.46	90.25	92.38	86.72	97.05	94.93	97.71	91.47	96.66	88.72	97.13	90.44
Overall Accuracy	90.38		87.4		89.52		89.78		85.94		87.76	
Kappa Coefficient	0.877		0.853		0.854		0.871		0.83		0.846	

Preidl, S., Lange, M., Doktor, D. (2019). Introducing APIC for regionalised land-cover mapping on the national scale using Sentinel-2A imagery. REMOTE SENSING OF ENVIRONMENT (accepted)

Classification performance

- Pixel-wise prediction error which can be associated with classification
- Clear regional differences based on satellite data and InVeKoS data availability
- Even single clouds in satellite time series are exhibited as increased prediction error

Coming-up: Tree species classification

- The methodology presented can be translated to classify tree species: BfN-project "Wakanaka"
- (https://forschung-sachsenanhalt.de/project/wakanaka-ermittlungnaturschutzbezogener-20953)
- Local forest inventories are used for training / validation
- Robust differentiation of 4 deciduous and 4 conifer tree species

Ripeness / Senescence, Sachsen, Chemnitz Year 2018

Ripeness / Senescence, Sachsen, Chemnitz Year 2017

Matching satellite products and ground observations

RMSE (Days) Winter wheat	Year	Green	n-Up	Head	ding	Senescence	
	2013, 2015	20.37	(6)	10.48	(17)	13.59	(17)
Winter barley	2013, 2015	6.17	(2)	6.84	(4)	9.53	(4)
Oilseed rape	2013, 2015	5.10	(2)			9.06	(5)
Sugar beet	2013, 2015	14.17	(4)				

Figure 6. Validated satellite-derived phenological dates for different crops in: (a,b) 2013 versus DWD data; (c,d) 2015 versus UFZ data. Red-coloured symbols indicate fields which were closest to DWD stations. Each box represents phenostages of all fields which were within 3 km around one DWD station.

Assista

Optimising Phenological Metrics Extraction for Different Crop Types in Germany Using the Moderate Resolution Imaging Spectrometer (MODIS)

Xingmei Xu 1,*, Christopher Conrad 2 and Daniel Doktor 1

- Department of Computational Landscape Ecology, Helmholtz-Centre for Environmental Research—UFZ, Leipzig 04315, Germany; daniel doktor@ufz.de
- Department of Remote Sensing, Institute of Geography and Geology, University of Wüzzburg, 97074 Würzburg, Germany; christopher.contad@uni-wuerzburg.de
- Correspondence: xingmei.xu@ufz.de; Tel.: +49-341-235-1010

Academic Editors: Jose Moreno and Prasad S. Thenkabail Received: 2 January 2017; Accepted: 6 March 2017; Published: 9 March 2017

Good match between satellite derived phenology and ground obsverations despite sparse ground network and high intra-field variability

Land-use intensity of grasslands

Intensity measures

- Mowing frequency
- Livestock density
- Fertiliser amount

www.ufz.de

14

Data Overview

- 7 pastures/meadows in central Germany
- Data includes:
 - Mowing dates
 - Fertilisation type, amount and dates
 - Livestock number

Methodology Land-use intensity metrics (from EVI evolution)

Mowing

- Number of rapid decrease events
- First decrease event related to number of mowing events?

Fertilisation

- Number of rapid increase events
- Statistical values: mean, trend

Livestock (Grazing and droppings)

- Statistical values: variance, mean, trend
- Number of decrease/increase events
- Sum of index increase or decrease

First results (GLM) Modelling of land-use intensity

First results Modelling of land-use intensity

Non-linear interactions (between mowing frequency and livestock density) hamper prediction.

Image Source: Google Earth (2019/04)

Methodology Supervised classification

Supervised machine learning methods facilitate almost perfect prediction.

Supervised classification "Extrapolation"

Extrapolation possible, but too few validation data yet available for robust evaluation of method.

Image Source: Google Earth (2019/04)

Extrapolation: Method comparison Livestock density comparison

[cows/day/hectar]

Extrapolation: Method comparison Grassland at Wadden sea

Image Source: Google Earth (2019/08)

Modelled livestock density

www.ufz.de

22