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Abstract

The development of pesticide resistance in insects and recent bans on pesticides call for the identification of natural sources of
resistance in crops. Here, we used natural variation in pepper (Capsicum spp.) resistance combined with an untargeted metabo-
lomics approach to detect secondary metabolites related to thrips (Frankliniella occidentalis) resistance. Using leaf disc choice
assays, we tested 11 Capsicum accessions of C. annuum and C. chinense in both vegetative and flowering stages for thrips
resistance. Metabolites in the leaves of these 11 accessions were analyzed using LC-MS based untargeted metabolomics. The
choice assays showed significant differences among the accessions in thrips feeding damage. The level of resistance depended on
plant developmental stage. Metabolomics analyses showed differences in metabolomes among the Capsicum species and plant
developmental stages. Moreover, metabolomic profiles of resistant and susceptible accessions differed. Monomer and dimer
acyclic diterpene glycosides (capsianosides) were pinpointed as metabolites that were related to thrips resistance. Sucrose and
malonylated flavone glycosides were related to susceptibility. To our knowledge, this is the first time that dimer capsianosides of
pepper have been linked to insect resistance. Our results show the potential of untargeted metabolomics as a tool for discovering
metabolites that are important in plant — insect interactions.
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erial, Waen s ble to authorized users Plant resistance to insects is often reduced in crops com-

pared to their wild ancestors, due to breeding efforts to
minimize the unwanted taste or toxic effects of some of
the plants’ natural chemical defenses. Modern varieties of
cabbage (Brassica oleraceae) for example, have very low
glucosinolate levels, typical anti-herbivore defenses in the
Brassicaceae family (Gols et al. 2008). To grow healthy
crops, application of insecticides has therefore become a
necessity. However, not all insects can be controlled effec-
tively by insecticides, partly due to a recent increase in
insecticide resistant insect populations (Bass and Jones
2018). Moreover, sustainable agricultural practices call
for finding natural insect resistance in crops to reduce the
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need for insecticides that are harmful to the environment,
e.g. neonicotinoids (Hallmann et al. 2014). Because genet-
ically modified crops are largely banned from Europe, nov-
el sources of resistance preferably come from wild crop
relatives that can be used in breeding schemes.
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Capsicum species (Solanaceae) are grown world-wide as
economically important crops, such as hot and sweet peppers,
which are mostly Capsicum annuum L. and Capsicum chinense
L.. A major pest on Capsicum are thrips, an order of tiny insects
that can cause severe damage (Steenbergen et al. 2018). In
greenhouses in Western Europe, western flower thrips
(Frankliniella occidentalis) is the prevalent pest species (Kirk
and Terry 2003). F. occidentalis is notoriously difficult to con-
trol with insecticides, due to its thigmotactic behavior and fast
evolving insecticide resistance (Bielza 2008). There are a few
studies on insect resistance in Capsicum (e.g. Fery and Schalk
1991; Maharijaya et al. 2011, 2012; Mollema and Cole 1996;
Yang et al. 2011), but the mechanisms underlying insect resis-
tance in this genus still remain largely unknown. Next to phys-
ical defenses such as hairs, almost all plants produce chemical
defenses. In this study we aim to identify the chemical defenses
of Capsicum species by using the natural variation in thrips
resistance among Capsicum accessions.

Plants produce a wealth of primary and secondary metabo-
lites. Plant chemical defenses are mostly secondary metabolites
(Schoonhoven et al. 2005). The estimated number of secondary
metabolites in the plant kingdom is 200.000 (Weckwerth 2003).
Plant secondary chemistry is often highly species specific, with
some metabolites only occurring in a single species or genus
(Macel et al. 2014; Schweiger et al. 2014). Studies on plant
chemical defenses have mostly focused on well-known plant
secondary metabolites such as alkaloids or glucosinolates.
However, these known chemical defenses are only a fraction
of all plant secondary metabolites. Hence, bioactive metabolites
may be overlooked when using targeted analytical approaches.
Novel analytical techniques and advanced bioinformatics make
it possible to detect and identify an unprecedented number of
metabolites. Using untargeted metabolomics analyses, many
metabolites of different compound classes can be detected in
a single analysis (Macel et al. 2010). The benefit is that next to
the ‘knowns’ also yet unknown metabolites can be detected,
which are related to plant resistance to herbivores or pathogens
(Leiss et al. 2009). The downside of untargeted metabolomics is
that some of the unknowns will remain unknown because an-
notation of the detected metabolites is still a daunting task
(Peters et al. 2018).

Here, we used an untargeted metabolomics screening ap-
proach in combination with thrips feeding assays to under-
stand the mechanisms of insect resistance in Capsicum. The
chemistry of Capsicum fruits is well-studied, mostly in rela-
tion to food quality and flavor (Kim et al. 2017; Martin et al.
2017; Wahyuni et al. 2014). Capsaicinoids in the fruits, alka-
loids that give the hot peppers their pungent taste, are known
to have anti-microbial activity (Tewksbury et al. 2008).
Chemistry the leaves is less well investigated, but several
studies indicate that secondary plant metabolites of
Capsicum play a role in pathogen and insect resistance. For
example, the terpenoid capsidiol plays a role in induced

defenses against pathogens (Lee et al. 2017). Volatiles emitted
by C. annuum plants can attract the Chilli thrips Scirtothrips
dorsalis (Shivaramu et al. 2017). High levels of tocopherols
and low levels of aromatic amino acids in leaves of Capsicum
have been related to thrips resistance (Maharijaya et al. 2012;
Mollema and Cole 1996). In addition, a recent study on me-
tabolite QTLs and thrips resistance using a C. annuum X
C. chinense F2 mapping population showed that high levels
some acyclic diterpene glycosides were weakly but signifi-
cantly correlated to thrips mortality (Maharijaya et al. 2018).

We selected 11 Capsicum accessions from a group of 40
accessions that were screened for resistance to the western
flower thrips F. occidentalis (Visschers et al. 2019). These
11 accessions, seven C. annuum and four C. chinense, were
classified either resistant or susceptible to F. occidentalis. In
this study, the same 11 accessions were tested again for thrips
resistance using leaf disc feeding choice-assays. Because in-
sect resistance may be plant age dependent (Barton and
Koricheva 2010; Cipollini and Redman 1999; Visschers
et al. 2019), we tested leaves from plants in the vegetative
stage as well as leaves from flowering plants in the feeding
choice assays. Leaves of these plants were also analyzed with
untargeted LC-MS metabolomics. Multivariate analyses were
used to link the metabolomic profiles with the thrips feeding
damage in order to pinpoint metabolites related to thrips resis-
tance or susceptibility in Capsicum.

Material and Methods
Capsicum Accessions and Plant Growth Conditions

Eleven Capsicum accessions were selected from a thrips re-
sistance screening of 40 accessions. These eleven accessions
were selected for being either most or least resistant (Visschers
et al. 2019). Original seed material was provided by the
Center for Genetic Resources (CGN) of Wageningen
University and Research Centre, The Netherlands (http://
cgngenis.wur.nl/) (Table S1). Seeds were multiplied by
selfing three plants per accession in the greenhouse, which
were combined in a bulk seed lot per accession. F1 seeds
were germinated on sterile glass beads with demi water in a
growth cabinet (Snijders DeLuxe, Tilburg, The Netherlands)
at 25/20 °C, 16/8 L/D, 70% humidity. F1 seeds were
germinated in closed plastic cups (7 cm diameter) on sterile
glass beats (I mm diameter) and demi water in a growth
cabinet at 30/20 °C, 16/8 L/D, 70% humidity. When the first
two true leaves had developed, the seedlings were
transplanted to plastic pots (11 cmx 11 cmx 12 cm)
containing commercial potting soil. The pots were placed in
a greenhouse, inside an insect-free net cage at 16/8 L/D and
minimum temperatures set to 20 °C/17 °C (day/night). Natural
light was supplemented with Greenpower lights. Plant were
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given nutrient solution once a week (1.8% Kristalon Label
Blue, Yara, Grimsby, UK). For each accession 8 to 16 plants
were grown and included in the metabolomics analysis. A
subset of the plants (8 to 10) of each accession were also used
in the thrips choice assays.

Thrips Choice Leaf Disc Assay

After 4 weeks of growth, when all plants were still in the
vegetative stage, one fully grown leaf from the upper part
per plant was used for thrips feeding assessment. Per acces-
sion 8-10 plants were used for this choice experiment. Leaf
disc experiments were performed as described by Visschers
et al. (2018a). Briefly, using a cork borer, two leaf discs
(1.5 cm diameter) were punched from each leaf, thereby
avoiding the mid-vein. A leaf disc from each accession was
placed on a drop of 1.5% slightly liquid agar with the abaxial
side up in a Petri dish (9 cm diameter). Each Petri dish (rz = 20)
thus contained 11 leaf discs (placed in a circle), each
representing 1 of the 11 accessions. The order of the leaf discs
was randomized for each replicate, the first disc of each set
was indicated with a star underneath the Petri dish. Ten Petri
dishes were inoculated with thrips, the other ten were used as
controls. Per inoculated Petri dish, 22 L1/L.2 F occidentalis
larvae, reared on green beans and starved for 24 h prior to
experiments, were placed in the middle of the dish using a
small painting brush. All Petri dishes were sealed with
Parafilm and placed in the same climate cabinet as used for
insect rearing. Petri dishes without thrips were directly sealed
with Parafilm and used for correction during image analysis.
After 48 h thrips were removed, and thrips damage was
assessed using imaging software (Visschers et al. 2018b).
After 17 weeks of plant growth, when all plants were
flowering, the thrips leaf disc choice assay was repeated, again
using leaves from the upper part of the plant.

LC-MS Sample Preparation and Metabolite Extraction

At the same time when leaves were harvested for the choice
assay, one leaf of the same age per plant was harvested for the
untargeted LC-MS based metabolomics profiling. Per acces-
sion, 8—16 individual plants were used for the chemical anal-
yses. Directly upon harvesting, leaves were flash frozen in
liquid nitrogen, freeze dried and stored at —80 °C. Freeze dried
material was finely ground with a Ball Mill (Retsch MM 300)
and 20 mg per sample was used for metabolite extraction for
LC-MS. A pool sample was made by combining equal
amounts of freeze dried material from all accessions and both
developmental stages; this pooled sample was treated similar-
ly and simultaneously as the experimental samples and used
as a quality control. Samples were extracted with 1 ml 75%
methanol +0.1% formic acid, sonicated at room temperature at
40 kHz for 15 min and then centrifuged for 10 min at
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15000 rpm (De Vos et al. 2007). A 500 ul aliquot of each
sample was transferred into a 96-well LC-MS plate.

LC-MS(MS) Analyses

Samples were put in randomized block order for LC-MS anal-
yses. Every 20 samples an extract from the sample pool was
placed as a quality control. LC-MS analyses were performed
as described previously (Mokochinski et al. 2018). In short,
separation of compounds in the crude extracts was performed
using an HPLC system (Waters Acquity, Milford, USA) gen-
erating a flow rate of 0.19 mL.min ' and a 45 min gradient of
5 to 75% acetonitrile in water, acidified with 0.1% formic
acid, on a C;g reversed phase column (Luna 150 X2 mm
i.d., 3 um; Phenomenex, Torrance, USA) kept at 40 °C.
Detection of eluting compounds was by a PDA detector
(Waters) at 210-600 nm and subsequently an LTQ-Orbitrap
FTMS hybrid mass spectrometer (Thermo Scientific, Bremen,
Germany). Samples were analyzed in both positive and nega-
tive ionization modes. A mass resolution of 60,000 FWHM
was employed during data acquisition in a mass range of m/z
90-1350. Additional LC-MS/MS analyses on selected sam-
ples were performed (van der Hooft et al. 2012).

LC-MS - Data Preprocessing

Baseline correction and peak-wise alignment was done
using Metalign (Lommen 2009). The threshold for signal
to noise ratio was set at 3. Data were filtered by removing
peaks that were present in less than 8 samples over the
entire dataset. For further multivariate data analyses, the
peak amplitudes were normalized to 10,000 total peak am-
plitude for each sample (relative abundance of peaks com-
pared to the total peak amplitude).

LC-MS Mass Feature Clustering

Cluster analyses were run in MSClust to group those mass
peaks that likely belong to the same metabolite, based on
their corresponding retention times and relative abundance
across samples (Tikunov et al. 2012). This procedure was
repeated with remaining mass peaks not assigned to a clus-
ter in the first cluster analysis, after which the two cluster
analyses were combined. The cluster analyses of the neg-
ative mode data resulted in 1966 clusters, or so-called re-
constructed metabolites, to which roughly half of the peaks
could be assigned. The mass clustering was used to iden-
tify parent ions and facilitate annotation of the metabolites.
The relative abundance of metabolites was expressed in
MIC values (i.e. Measured Ion Counts) which was used
as parameter for the multivariate analyses.
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Metabolite Annotation

Metabolite annotation was based on manually checking the
putative molecular ion within the clustered mass signals of
selected metabolites. Metabolites were then annotated using
an in-house database (Wageningen Plant Research -
Bioscience, the Netherlands) based on comparisons of retention
time, accurate mass, isotopic composition, UV spectra and M'S/
MS information, as well as on-line available metabolite data-
bases such as KNApSAcK, KEGG and MassBank. Putative
acyclic diterpene glycosides detected in negative mode were
confirmed by MS analysis in positive mode based on the pres-
ence of their common fragment with specific accurate m/z
271.2424 (Heiling et al. 2016). In our untargeted metabolomics
analyses, we detected double charged fragments that were cor-
related with thrips resistance. These fragments likely belonged
to diterpene glycosides, dimer capsianosides, with a molecular
weight higher than our initial 7/z range. For confirmation of the
dimer capsianosides, the LC-MS/MS mass range was extended
to m/z 150-2000 and selected samples of accession RU 63 were
analyzed in both positive and negative ionization modes.
Dimeric capsianosides have an m/z> 1400, monomers have
an m/z < 1400 (KNApSAcK).

Statistical Data Analyses

Data analyses were performed in R 3.5.0 (www.r-project.org)
and Simca 15 (Umetrics, Umea, Sweden). Thrips choice assay
data were calculated as mm? eaten per leaf disc / total amount
of mm? eaten per petri dish x 100 (relative amount eaten per
leaf disc in a petri dish) for each leaf disc. These data were
analyzed with a Friedman ANOVA for dependent data. Post-
hoc pairwise differences in thrips damage between accessions
were analyzed with paired Wilcoxon signed ranks tests. Based
on the choice assays results, accessions were classified as
either resistant (< 9% damage; if no preference among 11
choices, 9% damage is expected on each disc) or susceptible
(> 9% damage). This resistance classification was used in the
multivariate analyses.

To investigate the overall chemical diversity of the acces-
sions, the total number of detected mass signals among the
accessions and developmental stages were analyzed with a
two factorial ANOVA with accession and developmental stage
as fixed factors. Within each developmental stage, the differ-
ence in detected mass signals between susceptible and resis-
tant accessions was also analyzed with ANOVA, with resis-
tance grouping as fixed factor and accession nested in resis-
tance grouping.

To investigate differences in metabolomic profiles, both the
mass signal dataset as well as the cluster dataset (MIC) were
used for multivariate analyses and subsequent relevant metab-
olite selection (peak picking). The mass clustering software is
still under development, by using both datasets we achieved

the most complete and reliable screening of metabolites.
Focus of the data analyses was on the negative MS ionisation
mode, which was more consistent in peak detection over time,
whereas the positive ionization mode data were mostly used
for the annotation of the metabolites. Metabolomic profiles
were first explored with unbiased Principal Component
Analyses (PCA). Further analyses for identifying metabolites
underlying resistance or susceptibility were done using Partial
Least Square — Discriminant Analyses (PLS-DA). In these
supervised PLS-DA models, the resistance classification of
each accession was included in the model. All plants were
used in the metabolomics screening, and a subset was also
used for the thrips bio-assays. For the set of plants of which
we obtained both the metabolomics data as well as thrips
damage estimates, we also performed Partial Least Square
Regression analyses where % damage data was regressed
against the full metabolomic profiles. The PLS(—DA) models
were cross-validated with permutation tests (999 permuta-
tions). Q7 values of all permuted models were compared to
the Q? values of the real data. Q° values of the real data should
be higher than 0.5, and all permuted Q? should be lower than
the real Q. Significance of the PLS models was also tested
with cross-validated ANOVA (Eriksson et al. 2008; Triba
et al. 2015). Subsequently, the PLS loading plots and variable
influence on the projection (VIP) loadings of significant
models were used to make an initial selection of clusters/
mass signal of interest (VIP > 2). To confirm our PLS(—-DA)
results, relative abundance of the clusters/mass signals from
this initial cluster/mass selection were correlated with % thrips
damage at individual plant level (Spearman rank correlations).
Those masses/clusters that showed a significant or near sig-
nificant correlation with thrips damage, either positive or neg-
ative, were selected for metabolite annotation.

Results
Thrips Feeding Preference

The thrips leaf disc choice assay showed significant differ-
ences in feeding damage among the 11 accessions in both
the vegetative stage and the generative stage (Fig. 1,
Friedman ANOVA, vegetative stage XZ =57.6, df=10,
P <0.0001; generative stage XZ =38.6, df=10, P<0.0001;
see Table S2 for pairwise differences between the accessions).
In our leaf disc assay, feeding was lowest on accession RU 63
and high on RU 43 in both the vegetative stage and generative
stage (Fig. 1). For some accessions, thrips preference
depended on plant developmental stage. For example, RU
34 received relatively little damage in the vegetative stage,
but became more susceptible in the generative stage.
Similarly, RU 52 became more susceptible when flowering.
In contrast, RU 13 and RU 19 were susceptible in the
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Fig. 1 Mean percentage
Frankliniella occidentalis 1eaf
damage (+SE) per accession in
choice tests with leaf discs of 11
Capsicum accessions a) when
plants were 4 weeks old
(vegetative) or b) flowering
(generative). X-axis labels indi-
cate RU seedbank accession
numbers (see Table 1).
Accessions are ordered based
on feeding preference in the
vegetative stage. Overall differ-
ences between accessions are
significant in both vegetative
(A) and flowering (B) stage
(both P < 0.0001,P- values are
based on Friedman ANOVAs
for dependent data, for pairwise
differences between accessions
see Table S2). The letters r and s
indicate classification of the
accession as either resistant
(r<9% damage) or susceptible
(s>9% damage). N=8-10 per
accession

15 -

% damage

10 -

63

25

20 -

15 -

% damage

10 -

63

vegetative stage but became more resistant when the plants
where flowering (Fig. 1).

Metabolomic Profiling - Mass Signals Detected

After data filtering, the negative ionization mode yielded
24,531 detected mass signals and the positive ionization
mode 52,530 mass signals over all samples. The number
of total detected masses in the negative mode differed
significantly among accessions (ANOVA, df=10, F=
40.6, P<0.001).

In some accessions there was a significant increase in
number of detected masses in the generative stage com-
pared to the vegetative stage (accession x developmental
stage: F'=13.42, P<0.001, Table 1). This was most pro-
nounced in RU 13 (Table 1), which also was more resistant
in the generative than in the vegetative stage (Fig. 1). In the
generative stage, resistant accessions had on average sig-
nificantly more detected masses than susceptible
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accessions (Table 1, ANOVA, df=1, F=11.36, P=
0.008). In the vegetative stage, there was no difference in
number of detected masses between resistant and suscepti-
ble accessions (Table 1, ANOVA, df=1, F=1.24, P=
0.292) .

Metabolomic Profiling - Multivariate Analyses

The PCA of all data in both negative and positive ionization
modes showed a clear separation of the metabolomics profiles
based on species (PC 1) and developmental stage (PC 2)
(Fig. 2, Fig. S1). Based on these results, further analyses in
search for resistance factors in the metabolomics dataset were
performed per species and developmental stage separately.
Firstly, unsupervised PCA analyses of each species and devel-
opmental stage already showed a grouping based on resistance
class (Fig. S2) and on accessions (Fig. S3). Subsequent super-
vised PLS-DAs which incorporated the resistance classification
of each accession in the models, showed a clear separation of
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Table 1  Radboud University (RU) codes of Capsicum accessions, spe-
cies, and the average number of detected mass peaks (+SE) in leaves per
accession at the vegetative or generative developmental stage in the neg-
ative ionization mode of the MS are indicated. P values of Tukey post-hoc
tests after ANOVA indicate differences between developmental stages.

Resistance column indicates whether an accession was classified as resis-
tant (r) or susceptible (s) based on the choice assay results from Fig. 1.
Note that this may change from the vegetative stage to the generative
stage. N =8-16 per accession

Detected mass peaks

RU no. Species Vegetative Resistance Generative Resistance P
63 C. annuum 6561 (£87) r 7237 (£77) r <0.0001
23 C. annuum 6852 (£81) r 7099 (£66) r 0.065
19 C. annuum 6616 (£119) S 7171 (£75) r <0.0001
34 C. annuum 6507 (£109) r 5948 (£122) s <0.0001
43 C. annuum 6066 (+146) s 5943 (£134) s 0.363
52 C. annuum 5673 (£107) s 5697 (£196) s 0.241
14 C. annuum 6143 (£78) s 7052 (£132) s <0.0001
38 C. chinense 5753 (#91) r 5939 (+65) s 0.194
41 C. chinense 5591 (+44) s 6633 (+65) r <0.0001
70 C. chinense 5746 (£96) r 6444 (£101) r <0.0001
13 C. chinense 5771 (£55) s 7013 (£141) r <0.0001
Average Resistant 6341 (£67) 7012 (£50)

Susceptible 6041 (£61) 6077 (+£82)

metabolomic profiles based on resistance class (Fig. 3, Fig. S4).
Cross-validation permutation tests of the PLS-DA models
showed that all models were significant and not overfitting
(CV-ANOVA all P<0.001; all Q*>0.75, all Q* permuted
models < 0.3). For those plants of which we obtained both
the metabolomics data as well as thrips damage estimates, we
also linked thrips preference to metabolomic profiles by using
PLS regression models. These PLS regression models of
C. annuum were significant and showed a separation of meta-
bolomics profiles based on thrips damage levels (Fig. 4, Fig.
S5). For C. chinense these PLS regression models were not

Fig. 2 Principal Component \
Analyses (PCA) of LC-MS
untargeted metabolomics analy-
ses of Capsicum leaves in nega-
tive ionization mode. Different
colors indicate different species
and developmental stages. Ann_
veg: C. annuum vegetative stage
(dark blue dots), Ann_gen:

100

50

significant (P> 0.7, Q* < 0.2), likely due to smaller sample size
for this species, and were thus not used for further analyses.

Metabolite Identification

The PLS-DA loading plots and PLS regression loading plots
were used to select clusters/masses that contributed most to
the differences among groups and damage levels. Spearman
correlations further showed (near) significant correlations be-
tween relative abundance of part of these masses and percent-
age thrips damage (Table 2). Annotation of these masses

.Ann_gen
.Ann,veg
.Chin_gen

Chin_veg

BrooL

C. annuum generative stage
(green dots), Chin_veg:

C. chinense vegetative stage (yel-
low dots), Chin_gen: C. chinense
generative stage (red dots). Light
blue dots indicate the pool
samples

PC2,8 %

-50

-100

-150

-150

-50 0 50

PC1,10 %

100
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Fig. 3 Partial Least Square- Discriminant Analysis (PLS-DA) plots of indicate plants of resistant accessions, blue dots indicate plants of suscep-
LC-MS mass clusters (MIC) per Capsicum species and developmental tible accessions. All models were cross-validated with permutation tests
stage. a) C. annuum vegetative stage, b) C. annuum generative stage, ¢) (Q*>0.75, P<0.0001). N=8-16 per accession

C. chinense vegetative stage, d) C. chinense generative stage. Green dots

based on MS(MS) fragmentation patterns revealed that the  Capsianoside II was more abundant in C. annuum compared
metabolites that were related to resistance were mostly  to C. chinense, Capsisanoside VI was more abundant in
capsianosides, a group of acyclic diterpene glycosides  C. chinese, indicating species-specific capsianoside profiles
(DTG) (Table 2). The relative abundance of both monomer  (Fig. 5ab, Fig. S6). Capsianoside VI emerged from the
capsianosides and dimer capsianosides were significantlyneg-  C. chinense PLS-DA as related to resistant accessions, but
atively correlated with thrips preference (Table 2). While = was nevertheless poorly directly correlated with thrips
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Table 2 Relevant metabolites in Capsicum spp. related thrips
(Frankliniella occidentalis) resistance/susceptibility. Annotation based
on MS(MS) fragmentation patterns in both positive and negative
ionization mode. Annotation of capsianosides was based on presence of
271.24 aglycon fragment in positive ionization mode. m/z: mass-to-
charge ratio, Rt: retention time in minutes, Ry: Spearman Rank

Correlation Coeflicient of correlation between relative peak abundance
and % thrips damage per species/developmental stage. Small letters after
R, indicate species/stage(s) in which a correlation(s) was found; *")
C. annuum vegetative, *¢) C. annuum generative stage, ) C. chinense
vegetative stage, °®) C. chinense generative stage. Lowest R and P value
are given in case a metabolite was pinpointed in multiple analyses

Compound no. m/z MH- Rt Molecular formula Annotation Ry

1 563.1407 14.9 CreHa3014 Apigenin-O-glycoside —0.35%

2 679.1543 17.3 C30H3,015 Luteolin methyl ether —0.37"

3 921.4693 23.6 C44H7405 Capsianoside VI —0.17°¢

4 1083.5238 21.7 CsoHg4O55 Capsianoside 1T —(.39#xaV-28
5 1169.5247 225 Cs3HggOog Monomer Capsianoside —().52kHKAVE
6 1169.5248 23.0 Cs3HgsOog Monomer Capsianoside —(0.50%#x2Y
7 1185.5165 20.9 Cs3HggOn9 Capsianoside II + malonyl —(.50%#x8
8 1735.7971 27.5 CgoH 28039 Dimer Capsianoside —(. 728
9 1563.7969 28.0 C76H124033 Dimer Capsianoside —0.39*2
10 1649.7977 282 C79H 26036 Dimer Capsianoside —(.70%*x2-8
11 1735.7976 28.7 CgoH 25039 Dimer Capsianoside —().7 78
12 1735.7971 29.5 CgoH 25039 Dimer Capsianoside —(.76% w8
13 341.1089 2.1 C1,Hp0y, Sucrose 0.50% 28

14 343.1074 21.0 ? Unknown 070V

15 353.0876 8.7 Ci16H 309 Chlorogenic acid 0.46%#*8

16 371.2065 14.3 C3H,0, hexoside Unknown 0.4(%+a"-28
17 473.1093 17.7 Cy4H,,013 Apigenin-O-malonyl hexoside 0.60%#*8

18 533.0937 15.9 Cy4H5504 Luteolin-O-malonyl hexoside 0,50k
19 581.1529 92 Cy6H3005 Naringenin-C-hexoside-pentoside 0.56%:#*aY
20 649.1407 16.9 CyoH300,7 Malonylapiin 0.4 5% x5
21 665.1389 15.4 CyoH30015 Luteolin-diglucoside’ malonate (.83 rCVAY
+ P<0.10

*P<0.01

**P<0.001

*#%P <0.0001

preference (Table 2). The dimer capsianosides related to thrips
resistance were mostly only detected here in C. annuum
(Fig. 5c, Fig. S6, Fig. S7). Furthermore, two flavone glyco-
sides were related to resistance (compound 1 and 2), although
other flavone glycosides (compounds 18-22) were related to
susceptibility (Table 2). These flavone glycosides related to
thrips susceptibility mostly had a malonyl group (compound
17-18 and 19-20), such as malonylapiin (Table 2).
Chlorogenic acid and sucrose were also positively correlated
with thrips damage (Table 2). The relative abundance of su-
crose and in particular chlorogenic acid was high in leaves of
thrips susceptible accession RU 43 when plants were
flowering (Fig. 5de). Furthermore, sucrose levels in RU 13
dropped in the flowering stage, while they increase in RU
52 and RU 34 (Fig. 5d). This pattern matches with RU 13
becoming more resistant and RU 52 and RU 34 becoming
more susceptible in the flowering stage compared to the veg-
etative stage (Fig. 1).

Discussion

Our untargeted metabolomics analyses in combination with
thrips feeding assays of multiple Capsicum accessions re-
vealed metabolites that were related to thrips resistance and
susceptibility. Several monomer and dimer acyclic diterpene
glycosides (DTG) were related to resistance, while sucrose,
flavone glycosides and chlorogenic acid were related to sus-
ceptibility. To our knowledge, this is the first study that links
the dimer DTG to thrips resistance. Our results are in line with
other recent studies on DTG and highlight the emerging role
of DTG as defenses against insects in Solanaceae (Heiling
et al. 2010; Poreddy et al. 2015; Maharijaya et al. 2018).
The thrips choice assays showed significant differences in
thrips feeding among the selected Capsicum accessions.
Within the selected accessions, RU 63 was the most resistant,
which is consistent with earlier studies (Maharijaya et al.
2011) that included this and other accessions. RU 43 and
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Fig. 5 Examples of relative abundance of peak heights of selected
metabolites per Capsicum accession (+SE) in the vegetative stage (dark
bars) and the flowering stage (light bars). C. annuum accessions are
indicated in blue, C. chinense accessions in red. Compound numbers

RU 52 were the most susceptible. Interestingly, three acces-
sions became more resistant when they started flowering,
while two other accessions became more susceptible. Age-
related resistance has been shown in disease resistance (e.g.
Kus et al. 2002) and has also been described for resistance to
insects (e.g. Beck 1964; Cipollini and Redman 1999; Stout
et al. 2013). Generally, it is thought that changes in intrinsic
factors, such as resource acquisition and allocation, as well as
changes in extrinsic factors, such as herbivore selection pres-
sures, drive the evolution of age-related resistance (Barton and
Boege 2017). The chemical mechanisms behind age-related
resistance of our Capsicum accessions remain unclear,

@ Springer

correspond with those in Table 2. a) 3. Capsianoside VI, b) 4.
Capsianoside II, ¢) 11. Dimer Capsianoside, d) 13. Sucrose, e) 15.
Chlorogenic acid, f) 20. Malonylapiin. See Fig. S6 for relative
abundances of all metabolites from Table 2

although our data suggest this could be related to shifts in
relative abundance of sucrose in the leaves.

C. annuum and C. chinense had species-specific metabolome
profiles. Nevertheless, within each species and developmental
stage, there were overall differences in metabolomic profiles be-
tween thrips resistant and susceptible Capsicum accessions.
Metabolites that were negatively correlated with thrips damage
were annotated as acyclic diterpene glycosides (DTG), so-called
capsianosides in Capsicum species. There are two types of DTG
in Capsicum; monomer capsianosides [-XVIII with either 17-
hydroxygeranyllinalool (HGL), 13-hydroxygeranyllinalool-16-
oic acid aglycone or geranyllinalool-16-oic acid as aglycone,
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and dimer capsianosides A-L, with HGL and 13-
hydroxygeranyllinalool-16-oic acid or geranyllinalool-16-oic ac-
id as aglycones (Izumitani et al. 1990; Yahara et al. 1991; Lee
et al. 2008). A recent mQTL (metabolite QTL) study linked four
monomer capsianosides from Capsicum with thrips survival
(Maharijaya et al. 2018). Our metabolomics analyses revealed
that also dimer capsianosides are related to thrips resistance. We
detected ten capsianosides that were related to thrips resistance,
five of which were dimers. Interestingly, of these ten
capsianosides only compound #7 (Capsianoside II + malonyl)
was also found in the mQTL study of Maharijaya et al. (2018).
Capsianosides may also have antimicrobial activity (Bacon et al.
2017). Similar monomer 17-hydroxygeranyllinalool diterpene
glycosides (HGL-DTG) in Nicotiana species are acting as direct
defenses against multiple insect herbivores (Snook et al. 1997;
Heiling et al. 2010). The 17-hydroxygeranyllinalool diterpene
backbone is thought to be the active component of the DTG
(Snook et al. 1997). The sugars and malonyl groups that are
attached to this terpene backbone are proposed to enable trans-
port and storage inside the plant and prevent autotoxicity
(Heiling et al. 2010).

Our data suggest species-specific abundance of particular
capsianosides. For example, capsianoside VI was more abundant
in C. chinense than in C. annuum, and capsianoside Il was more
abundant in C. annuum. Differential activity of modifying en-
zymes such as glycosyltransferases may lead to differences in
capsianosides profiles among Capsicum accessions and species
(Wahyuni et al. 2014), as was shown in Nicotiana (Heiling et al.
2016). A major QTL for thrips resistance co-localized with two
DTG (Maharijaya et al. 2018). The capsianosides are also present
in Capsicum fruits (Wahyuni et al. 2013), and it is unclear how
high levels may affect taste or quality of the fruits, although they
may have dietary benefit (De Marino et al. 2006). Interestingly,
in fruits the mQTLs for capsianosides were localized at different
chromosomes than the mQTLs of some capsianosides present in
the leaves (Maharijaya et al. 2018; Wahyuni et al. 2014). We
studied the constitutive chemical defenses of Capsicum, but it
seems likely that the capsianosides also play a role in herbivore
induced defenses. DTG synthesis in V. attenuata is induced upon
herbivore feeding, which is regulated by the jasmonate signaling
pathway (Heiling et al. 2010). Elucidating the molecular path-
ways and genes involved in capsianoside production, induction
and diversity may shed light on the genetic mechanisms of DTG-
based insect resistance in Capsicum.

At least 18 monomer and 12 dimer capsianosides have been
described thus far in Capsicum species (Lee et al. 2008; Yahara
et al. 1991,). In our additional MS/MS analysis of selected
samples of C. annuum RU 63 we detected 6 monomer and 12
dimer capsianosides (Fig. S7). Not all of these emerged from
our untargeted metabolomics study as linked to thrips resis-
tance. It is possible that not all capsianosides are equally effec-
tive against F. occidentalis. Bioactivity of DTG may depend on
their glycosylation pattern (Poreddy et al. 2015), but this needs

further research with targeted analyses specifically aimed at
detecting both monomer and dimer capsianosides.
Furthermore, due to limitations of our MS-based analytical
platform, mainly the inability to assign exact sugar positions
and linkages to these complex molecules (Heiling et al. 2016),
detailed annotation of the dimer capsianosides was not possible.

Several flavone glycosides (compound 17-21) were positive-
ly correlated with thrips damage, although two other flavones
were correlated with resistance in C. chinense (compound 1-2).
Structurally related metabolites can differ in their effects on in-
sects. For the flavones for example, luteolin-D-glycoside from
C. annuum was not deterrent to the leaf miner Lyriomyza trifolli,
while the structurally related luteolin-apiosyl-glucoside was high-
ly deterrent (Kashiwagi et al. 2005). Luteolin itself was toxic to
thrips (Leiss et al. 2013). Here, we found that an apigenin-O-
glycoside and a luteolin methyl ether were related to thrips resis-
tance, but that some malonylated luteolin and apigenin glyco-
sides were related to susceptibility to thrips. The role of
malonylation in defense needs further study (Heiling et al. 2010).

Sucrose was related to thrips susceptibility, which is not sur-
prising because thrips need the sugars from the plant to survive
and grow (Nielsen et al. 2010). Chlorogenic acid was also relat-
ed to susceptibility but has been related to insect resistance in
other plant species (e.g. Leiss et al. 2009; Dillon et al. 2017). In
our study, chlorogenic acid was particularly abundant in one of
our most susceptible C. annuum accessions in the flowering
stage (RU 43). Our results showed that chlorogenic acid per se
is not an effective defense against thrips in Capsicum. Possibly,
differences in polyphenol oxidase activity (enzymes involved in
oxidative activation of phenolic compounds) among species de-
termine the role of chlorogenic acid in plant — insect interactions
(Appel 1993). Moreover, the effectivity of plant compounds is
likely determined by the background metabolome in which they
are present, which is different for each species and genotype. In
a similar way, gene function may alter depending on the back-
ground genome (Chandler et al. 2013). Artificial diet experi-
ments with alkaloids and chlorogenic acid showed that indeed
the chemical background influenced the bioactivity of the com-
bination of these compounds on thrips survival (Liu et al. 2018).

In a similar way, interactions between capsianosides and
other compounds of the metabolomes of different accessions
may alter the effect of capsianosides on resistance. Maharijaya
et al. (2018) also suggest that several metabolites acting in
concert may be responsible for thrips resistance in
Capsicum. In our study, there was no clear trend that
capsianoside abundance went up in those accessions that be-
came more resistant in the flowering stage. Possibly, it is the
combination of capsianosides and sucrose or other com-
pounds that are important for resistance (e.g. high levels of
capsianosides, low levels of sucrose). Metabolite richness or
diversity of the metabolome in itself may further play a role in
insect resistance (Macel et al. 2014). In our Capsicum study,
resistant accessions had on average significantly higher
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chemical diversity than susceptible accessions in the
flowering stage, although this was not significant in the veg-
etative stage. Compounds can act synergistically and a wider
range of metabolites is thought to act as defenses against a
wider range of attackers (Berenbaum et al. 1991).

Untargeted metabolomics provides a more comprehensive
insight into the plant metabolome and can be used as a tool to
screen for the unknowns that are important in plant — insect
interactions. Furthermore, interactions between compounds can-
not be revealed with targeted chemical analytical approaches.
Once interesting metabolites have been identified, fine-tuned
targeted chemical analytical procedures and additional experi-
ments with gene-silenced plants and/or bioassays with pure
compounds could further elucidate their effect on insects. The
group of acyclic diterpene glycosides that we pinpointed in our
pepper study have previously been related to broad spectrum
insect resistance in Nicotiana species. Within the Solanaceae,
DTG have been detected in the genus Capsicum spp., Lycium
barbarum and several Nicotiana species, but were absent from
Tomato (Solanum lycopersicum) and Potato (Solanum
tuberosum) (Heiling et al. 2016). Similar DTG were found in
Asteraceae (Akter et al. 2016). These are all fairly recent studies;
it is thus possible that DTG occur in other plant species belong-
ing to different plant families. Increasing the levels of DTG in
elite breeding lines could be a way to increase insect resistance
in pepper crops, provided that there is no trade-off with yield or
food quality. Using natural variation of insect resistance in wild
relatives of crops in combination with novel chemical and ge-
netic technologies can lead to the discovery of new sources of
insect resistance that may enhance crop protection.
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