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Abstract. The abundance and distribution of species across the landscape depend on the
interaction between local, spatial, and stochastic processes. However, empirical syntheses relating
these processes to spatiotemporal patterns of structure in metacommunities remain elusive. One
important reason for this lack of synthesis is that the relative importance of the core assembly pro-
cesses (dispersal, selection, and drift) critically depends on the spatial grain and extent over which
communities are studied. To illustrate this, we simulated different aspects of community assembly
on heterogeneous landscapes, including the strength of response to environmental heterogeneity
(inherent to niche theory) vs. dispersal and stochastic drift (inherent to neutral theory). We show
that increasing spatial extent leads to increasing importance of niche selection, whereas increasing
spatial grain leads to decreasing importance of niche selection. The strength of these scaling effects
depended on environment configuration, dispersal capacity, and niche breadth. By mapping the
variation observed from the scaling effects in simulations, we could recreate the entire range of
variation observed within and among empirical studies. This means that variation in the relative
importance of assembly processes among empirical studies is largely scale dependent and cannot
be directly compared. The scaling coefficient of the relative contribution of assembly processes,
however, can be interpreted as a scale-integrative estimate to compare assembly processes across
different regions and ecosystems. This emphasizes the necessity to consider spatial scaling as an
explicit component of studies intended to infer the importance of community assembly processes.

Key words: community assembly; dispersal; ecological drift; metacommunity; neutral theory; niche
selection; sampling grain; spatial extent; spatial scale.

INTRODUCTION

The abundance and distribution of species across the
landscape depend on the interaction between multiple pro-
cesses, including habitat heterogeneity, dispersal and eco-
logical drift (e.g., Leibold et al. 2004, Gravel et al. 2006,
Vellend 2010, 2016, Leibold and Chase 2017). Despite the
relatively straightforward way to delineate these basic
assembly processes conceptually, empirical evidence
describing their relative importance has been more chal-
lenging. For example, early tests of the importance of dis-
persal and drift inherent to the neutral theory, as opposed
to niche theory, focused on one-dimensional patterns such

as the shape of the species abundance distribution (e.g.,
McGill 2003 vs. Volkov et al. 2003) or distance-decay rela-
tionship (e.g., Condit et al. 2002 vs. Tuomisto et al. 2003).
However, these pattern analyses alone are unlikely to be
able to distinguish the relative importance of different pro-
cesses (e.g., Chave et al. 2002, Chisholm and Pacala 2010,
M€unkem€uller et al. 2012, May et al. 2015). As a result,
considerable emphasis has been placed on using multivari-
ate analytical tools as a means to disentangle the relative
importance of different community assembly processes
(e.g., Peres-Neto et al. 2006, Shipley et al. 2012, Monteiro
et al. 2017, Ovaskainen et al. 2017).
One of the most popular approaches for exploring the

relative importance of different metacommunity assembly
processes has been the use of multivariate methods (e.g.,
Borcard et al. 1992, Peres-Neto et al. 2006) to partition
the effects of environmental factors (typically associated
with niche-related processes) and spatial factors (typically
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associated with neutral-related processes) in determining
community structure (e.g., Gilbert and Lechowicz 2004,
Cottenie 2005, Legendre et al. 2009, Soininen 2014, 2016).
While variation partitioning to infer environmental (and
spatial) correlates of community structure remains an
important tool, it has a number of limitations. Some of
these are statistical (e.g., Gilbert and Bennett 2010, Smith
and Lundholm 2010), while others are more theoretical,
for example, when certain niche-based mechanisms (e.g.,
frequency dependence or priority effects) nevertheless
result in weak correlations of community structure with
environment (e.g., Leibold and Chase 2017).
Despite recent improvements in the analytical meth-

ods used to infer environmental vs. spatial (and inter-
specific) associations of species in metacommunities
(Layeghifard et al. 2015, Monteiro et al. 2017, Ovaskai-
nen et al. 2017), a largely overlooked but critical feature
of any metacommunity is the spatial scale at which it is
observed (but see Legendre et al. 2009, Chase 2014, Lei-
bold and Chase 2017). While the fundamental impor-
tance of spatial scale in influencing process and pattern
in community ecology has been recognized for decades
(e.g., Shmida and Wilson 1985, Wiens 1989, Levin 1992,
O’Neill et al. 1996), these scaling relationships are rarely
considered in theoretical or empirical investigations of
metacommunity structure. Instead, spatial extent (i.e.,
the total area of observation encompassing all observa-
tion units) and grain (the area of the observation unit) of
sampling are often chosen arbitrarily based on logistics
and/or features of the landscape. For example, the stud-
ies included in syntheses by Cottenie (2005) and Soini-
nen (2014, 2016) were based on data collected over
widely different spatial extents and grains. If spatial scale
influences conclusions about the relative importance of
different assembly mechanisms, it would be critical to
recognize, and account, for this relationship.
One way that scale can influence the importance of

community assembly mechanisms is via increases in spa-
tial extent, which will typically increase the magnitude of
habitat heterogeneity encompassed by the study. As a
result, systems that may appear more neutral when
observed at smaller scales can appear more niche-struc-
tured at larger scales (e.g., Chase 2014). For example,
Garzon-Lopez et al. (2014) analyzed the distributions of
several tree species on Barro Colorado Island, Panama.
When they observed species distributions at the scale of
the 50-ha permanent forest plot that serves as a “type
case” of a largely neutrally structured community (e.g.,
Hubbell 2001, Condit et al. 2012), they found little asso-
ciation with habitat characteristics. However, when they
increased the window of observation to encompass more
heterogeneity across the entire island, those same tree
species distributions become more strongly habitat-asso-
ciated. Likewise, the relative importance of dispersal lim-
itation and stochasticity may increase at larger spatial
extents, possibly at the cost of niche selection if species
are not able to track suitable habitat across the whole
extent (e.g., Ng et al. 2009, Declerck et al. 2011).

Sampling grain can also sway inference of community
assembly processes. As the sampling grain increases, the
number of individuals and species increase while the loca-
tion and environmental variables are averaged within the
sampled plot. We might expect that when the grain of
observation is significantly coarser than the grain of envi-
ronmental variation, the relative importance of environ-
ment for explaining community structure will decrease.
These scaling issues beg for a shifting paradigm in the

type of question we ask in community ecology. For
example, rather than simply asking about the relative
importance of niche selection processes, dispersal and/or
drift (e.g., Vellend 2010, 2016), we argue that this ques-
tion must be put in a scale-explicit context. In what fol-
lows, we systematically explore how sampling extent and
grain alter our inference of assembly processes. To do so,
we describe the variation in the type and shape of the
relationships between sampling grain and sampling
extent, and the relative importance of niche selection rel-
ative to dispersal and drift in explaining diversity pat-
terns (hereafter called “scaling relationship”).
Our basic approach consisted of (1) simulating commu-

nity assembly under a predefined set of rules that produce
a continuum between neutral and niche-based processes;
(2) sampling the simulated communities across spatial
extents and using different sampling grains; and (3) ana-
lyzing data using standard statistical tools to infer com-
munity assembly processes (Fig. 1). We show how
increasing sampling extent leads to inference of stronger
niche selection, whereas increasing sampling grain leads
to inference of weaker niche selection. Further, we char-
acterize the shape of the scaling relationship and illustrate
how we can derive a parametric scaling coefficient that
describes its shape. Finally, to contextualize the impor-
tance of the scaling effects, we compare our results to a
broad range of metacommunities sampled in the context
of syntheses by Cottenie (2005) and Soininen (2014). In
doing so, we assess to what extent sampling effects can
reproduce some of the empirical variation observed that
would otherwise be interpreted as differences in the rela-
tive importance of assembly processes.

METHODS

Simulating community assembly

We used an individual-based model on a lattice, where
only one individual could occupy a given cell. Although
model rules were designed to be as general as possible, it
resembles the lottery model of Gravel et al. (2006) and
extensions of it (e.g., Lasky and Keitt 2013, Latombe
et al. 2015) parameterized in line with dynamics of forest
communities. This model was chosen due its simplicity
and utility for varying both grain and extent to analyze
community assembly outcomes. We built the model to
flexibly simulate a continuum between neutral and niche
dynamics by varying dispersal limitation and niche dif-
ferentiation, creating a trade-off between stochastic and
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competitive exclusion. Pure neutral dynamics emerged
when we assumed a degree of dispersal limitation and
total niche overlap (i.e., functional equivalence) between
species, whereas pure species sorting was possible under
complete niche differentiation.
We simulated community assembly on landscapes com-

posed of one environmental variable simulated according
to a Gaussian random field with autocorrelation defined
by the “range” parameter (see examples in Appendix S1:
Fig. S1). Simulations consisted of four basic processes:
reproduction, mortality, dispersal and colonization. Neu-
tral dynamics were simulated with random reproduction
(randomly chosen reproducers), death and colonization,
while species under selection scenarios were characterized
by a fundamental Gaussian niche that defined their per-
formance in a given environment (ki) as

kiðEÞ ¼ exp
�ðE � liÞ2

2r2

" #

where E is the environmental value, li is the optimal
environmental condition for species i (i.e., the trait
value) and r is the fundamental niche breadth (equal for
all species; Tilman 2004, Gravel et al. 2006). ki deter-
mined the probability of survival, reproduction, and col-
onization in environment E. Dispersal was limited only

by distance according to a lognormal kernel W(r), where
the location parameter (ldispersal) was 0 (i.e., dispersal
peaks at a distance of one grid cell) and the scale param-
eter (rdispersal) controlled the dispersal capacity. Such a
lognormal dispersal kernel has been found in many seed
dispersal systems (Rawsthorne et al. 2009, Viana et al.
2013). In addition to dispersal within the grid, we incor-
porated immigration (m) from outside the grid (i.e., from
the metacommunity) to avoid long-term monodomi-
nance in communities that were more neutral. The immi-
gration rate was defined as

m ¼ Prm
pA

where P is the perimeter of the grid, rm is the mean dis-
tance between adult and recruit, and A is grid area
(Chisholm and Lichstein 2009). The values for all
parameters can be found in Appendix S1: Table S1.
In each time step (one generation), (1) a given propor-

tion of individuals in the landscape died according to
the defined mortality rate (0.02; rounded up from 0.013
[Condit et al. 2006] to accelerate dynamics), (2) a given
proportion of individuals reproduced (0.7; Wright et al.
2005) by producing 10 dispersing propagules each (cor-
responding to the lower limit of sapling density found in
temperate forests; Pacala et al. 1996), (3) the propagules
dispersed in a random direction and over distances sam-
pled from the dispersal kernel, and finally (4) the
propagules colonized empty cells. Whenever more than
one propagule arrived in the same cell, individuals com-
peted where the winning probability was k (under neu-
trality, this probability was equal). The recruitment
probability Ri for species i in a given empty cell is the
sum of its propagules produced by N conspecific adults
located at r distances, weighted by the dispersal function
W(r), divided by the sum of the propagules coming from
adults of all j species at all r distances (Gravel et al.
2006). Because we also defined a fixed immigration rate
m (with equal probability for all species), the recruit-
ment probability is

Ri ¼ ð1�mÞ
Pn

r¼1 kiNi;rWðrÞPs
j¼1

Pn
r¼1 kjNj;rW ðrÞ þm:

We ran 10 replicate simulations for each parameter
combination to account for variation resulting from
stochastic community assembly.

Sampling of simulated communities

We varied the spatial extent of sampling by choosing
one origin cell randomly across the grid and sampling all
cells within progressively increasing circular areas from
the origin (10 origins were chosen to replicate sampling).
For grain size, the optimal grain size should be equal to
the environmental grain, that is, to the maximum area
within which the environment is homogeneous. Thus, to

FIG. 1. Methodological framework used to explore scaling
effects on the inference of community assembly processes.
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explore grain effects, we first ran the simulation model
on “patchy” landscapes with homogeneous environmen-
tal conditions within patches and used a sampling grain
that corresponded exactly to the patches. Next, we
increased grain size by progressively decreasing the num-
ber of equal-sized sampling plots into which the whole
extent was divided. This compact stratification was per-
formed by means of k-means clustering using the R
package spcosa (Walvoort et al. 2010), where the grid is
partitioned according to a classification scheme based
on the geographical coordinates of grid cell midpoints
that are iteratively reallocated to clusters to minimize
the mean square shortest distance.

Inference of the relative importance of assembly processes

As discussed above, the most popular method for
inferring the relative importance of community assembly
processes, despite its limitations, remains partitioning the
compositional variation explained by (groups of) predic-
tors such as spatial and environmental variables (Borcard
et al. 1992, Peres-Neto et al. 2006). This approach is,
however, based on linear regression and is thus limited if
species respond nonlinearly to the environment, such as
when niches are Gaussian (a pervasive pattern in nature).
Adding higher-order polynomials could be a solution to
model non-linear relationships, but the typical large
number of zeros (i.e., species absences) is not appropri-
ately accommodated with available methods. For this rea-
son, and to isolate and illustrate the effect of scale, we
used the trait values of the species (i.e., li) as the response
variable in a simple linear regression model. In a scenario
of perfect species sorting (i.e., under complete niche dif-
ferentiation), the match between li and the environment
would be perfect and the coefficient of determination
(R2) would be 1. If species cannot fully track the environ-
ment, either because their niche overlaps with other spe-
cies (generating competition for the resource), because of
dispersal limitation, or because of stochasticity, the R2

decreases. More complex approaches involving a species
abundance matrix as a response variable could be applied
to the same set of simulations, but would not change our
main conclusions.
In order to account for dispersal limitation, we added

spatial variables created by means of Moran’s Eigenvector
Maps (MEM) as predictors to the linear model (Dray
et al. 2006). Thus, we evaluated the relative importance of
selection, dispersal, and drift by partitioning the variation
attributed to the effects of the environment [E] and space
[S] plus unexplained variation [R], respectively. Because
cells are regularly distributed and the environment is (to
some degree) spatially correlated, the MEM variables effi-
ciently captured the spatial structure of the environment.
Thus, we interpreted the shared variation fraction between
the environment and space [E∩S] as being driven by the
effect of the environment, and the unique contribution of
[S] as dispersal limitation. We acknowledge that in the spe-
cial case where the scale of environmental autocorrelation

matches the scale of intraspecific aggregation resulting
from dispersal limitation, there is some chance of inferring
spurious habitat associations (Smith and Lundholm
2010). Still, using trait values rather than species abun-
dances should limit spurious habitat associations arising
from dispersal-mediated aggregation.
Finally, we evaluated whether stochastic processes

could generate spatial patterns that could influence our
interpretation of the shared and spatial variation frac-
tions. We performed 1,000 stochastic simulations of neu-
tral dynamics with no dispersal limitation and found
only a small percentage of simulations with a significant
spatial pattern (5.1%, P < 0.05), with the proportion of
explained variation never exceeding 0.064 (median
<0.005). After partitioning the variation, the maximum
explained by the shared fraction (between space and
environment) was negligible (0.002). Therefore, in ~5%
of our simulations reported below, a small proportion of
variation in the exclusive spatial fraction might be
explained by pure stochasticity, but did not affect the rel-
ative importance of niche selection.

The scaling relationship

To investigate how the relative importance of niche
selection varies as a function of spatial extent and grain
of sampling, we characterized the shape of the relation-
ship between the fraction of variation explained by the
environment (i.e., the partitioned R2 resulting in fraction
[E]) and either spatial extent or grain. By fitting a regres-
sion model to the scaling relationship, we estimated a
parametric scaling coefficient, which was used as a scale-
integrative measure of the relative importance of niche
selection. The scaling relationships were mainly driven
by environmental heterogeneity, with [E] increasing lin-
early with environmental heterogeneity regardless of
landscape configuration (see Results and Appendix S1:
Fig. S2). The linear trend of this scaling relationship was
robust across simulated landscape configurations and
community dynamics, but further exploration with
empirical data is needed to confirm the generality of this
form. To avoid effects of landscape configuration such
as those derived from gradient and mosaic landscapes
(see Results), we measured environmental heterogeneity
as mean Euclidean distance in environment, rather than
spatial scale, as the “scaling” factor. This provides a
more universal scaling factor, not only because of land-
scape configuration, but also because relevant scales of
environmental variation differ among taxa; for example,
macroorganisms are responsive to environments struc-
tured over larger spatial scales than microorganisms.

RESULTS AND DISCUSSION

Sampling extent

The relative importance of the environment in explain-
ing community composition [E] increased logarithmically
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with increasing sampling extent whenever species had
some degree of niche differentiation (Figs. 2 and 3). How-
ever, landscape configuration affected the scaling relation-
ships (Fig. 2a–c). In gradient landscapes where the
environment varies more linearly (see Appendix S1:
Fig. S1), the scaling relationship tends to conform to a
logarithmic pattern (Fig. 3a). However, in mosaic land-
scapes (see Appendix S1: Fig. S1), the scaling relationship
is affected by the scale at which the environment is
repeated across space. Both niche breadth and dispersal
capacity affected the scaling relationship (Fig 3a–c). The
scaling coefficient decreased from higher to lower niche
differentiation (Fig 3a, c), becoming null under virtually
neutral communities. Finally, species’ dispersal capacity
affected the scaling relationship: under selection, low to
intermediate dispersal capacity led to higher coefficients
compared to very low and high dispersal (Fig. 3b, c). At
high dispersal capacity, the results were consistent with a
mass effects scenario (Fig. 3c), in which species with
lower performance in given environments could neverthe-
less persist due to spillover (Mouquet and Loreau 2003,
Matias et al. 2013).

Sampling grain

In general, the relative importance of the environment in
explaining community composition [E] decreased with

increasing sampling grain (Figs. 2 and 3). However, these
scaling effects were stronger in mosaic landscapes as com-
pared to gradient landscapes and were larger for the inter-
cept rather than the slope of the scaling relationship.
Larger ranges of environmental autocorrelation led to
slightly higher intercepts (Fig. 2d, e), and the slope of the
relationship was more affected in mosaic than in gradient
landscapes (Fig. 2f). On the other hand, larger dispersal
capacity and niche breadth strongly decreased the intercept
(Fig. 3d, e) and, to a lesser degree, the slope of the scaling
relationship (i.e., the slopes were more negative; Fig. 3d–f).

Contextualisation of scaling effects

The results from our simulation modeling show that
inference of community assembly processes strongly
depends on sampling grain and extent. Thus, we hypothe-
size that the results of empirical studies are also affected
by both the grain and extent of sampling in the study. We
observed that in most scenarios where both neutral and
selection processes act together, conclusions about the rel-
ative importance of the assembly drivers (selection, dis-
persal limitation, and drift) reverse with sampling extent
(Fig. 4a). Importantly, this magnitude of variation
observed across sampling extents even within a single set
of simulation parameters is comparable to that observed
across all empirical studies synthesized in Cottenie (2005)

FIG. 2. Scaling effects generated by varying sampling extent and grain on the importance of the environment in explaining com-
munity composition (“scaling relationships”) under different landscape configurations: gradient and mosaic landscapes with differ-
ent environmental autocorrelation (i.e., varying variogram range). The scaling coefficient in panels c and f results from the
relationship between spatial scale (extent or grain) and the relative importance of the environment (niche selection). The scaling
coefficient represents a scale-integrative measure of process importance.
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and Soininen (2014) (Fig. 4b). Specifically, the impor-
tance of selection increases with spatial extent in our sim-
ulations (R2 increases from 0 to 0.60), and this was
comparable with the variation observed in empirical stud-
ies (R2 varies from 0.10 to 0.70). Likewise, as extent
increases, the importance of dispersal decreases (R2 from
0.60 to 0.20), which again is comparable to the empirical
variation (R2 ranges from 0.50 to 0.05). The effect of sam-
pling grain is also important, though less in magnitude.
Our ability to detect dispersal limitation decreased con-
siderably with increasing sampling grain, which leads to
the conclusion that selection was generally the most
important driver (e.g., Fig. 4c), except when community
assembly approached neutrality. Although less dramatic,
we also see that varying sampling grain caused consider-
able variation, particularly in the inferred importance of
selection, which ranged from an R2 of 0.40 at fine grains
to 0.10 at coarse grains, again spanning some of the range
observed among empirical studies (Fig. 4d).

CONCLUSIONS, CAVEATS, AND FUTURE DIRECTIONS

Our main message is simple: sampling extent and
grain have profound effects on the inference of commu-
nity assembly processes, including many cases where dif-
ferences in the scale of observation can reverse
conclusions about the relative importance of selection,

dispersal and drift. It is clear that it is necessary to
account for these scaling effects if we are to understand
the relative importance of different metacommunity
assembly processes in different places and times. We
argue that only scale-integrative inferences can be useful
to compare studies on different taxa, regions and ecosys-
tems, and contribute to synthesis in community ecology.
Based on our results, we provide some recommenda-

tions regarding sampling and experimental designs. (1)
Communities should be sampled over multiple spatial
extents to progressively increase the environmental hetero-
geneity (i.e., increase the coverage of relevant environmen-
tal gradients) and respective species responses. This will
allow an estimate of a scaling coefficient that is a quantita-
tive measure of the relative importance of processes. The
scaling coefficient can then be used to compare different
(meta)communities in a scale-integrative manner. (2) Sam-
pling grain size should be optimized to match environ-
mental grain as closely as possible. Because environmental
grain is multivariate, optimization requires choosing a
grain size that maximizes environmental heterogeneity.
Alternatives are to sample all individuals across space,
which can be an expensive and daunting task (but see e.g.,
permanent forest plots; Condit 1995, Anderson-Teixeira
et al. 2015), or simply to reduce sampling grain as much
as possible. Finally, (3) the effort of sampling across differ-
ent spatial extents at small grain sizes might be alleviated

FIG. 3. Scaling effects generated by varying sampling extent and grain on the importance of the environment in explaining com-
munity composition (“scaling relationships”) under different niche breadths and dispersal capacities, which produce variation along
the neutral-niche continuum. Color in panels c and f represents the scaling coefficient of the relationship between spatial scale (extent
or grain) and the relative importance of the environment (niche selection). The scaling coefficient represents a scale-integrative mea-
sure of process importance.
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to some extent by using a regular sampling configuration
that maximizes environmental coverage.
The scaling relationships we illuminate here can also

provide important context for conservation. This is
because the scaling relationship detects the minimum
extent at which environmental heterogeneity is needed to
maintain diversity in the study area; that is, the extent at
which the scaling relationship reaches an asymptote cor-
responding to the maximum compositional variation
explained by the environment. This information might be
useful, for example, if a goal is to restore disturbed habi-
tats and maximize regional species diversity; the scaling
relationship can be used to estimate the minimum area
with sufficient environmental heterogeneity required to
maintain the regional diversity.
Our simulations were limited to the extreme cases of

environmental selection (niche) and dispersal and drift
(neutral) processes. Our main intent was simply to illus-
trate how different aspects of scale can fundamentally
influence our understanding and inference of the relative
importance of different metacommunity assembly pro-
cesses. However, communities consist of a multitude of
other assembly processes, including intra- and inter-
specific competition (which can also be influenced by
niche selection), patch dynamics, temporal dynamics
and priority effects. The inference of these is also likely

sensitive to sampling scale. However, at the moment, we
are largely unable to infer these processes because of a
lack of appropriate analytical tools. If and when we are
able to do so, it will also require explicit consideration of
the sorts of scaling patterns discussed here.
Many analytical tools have been developed and used to

infer community assembly processes, including pattern
analysis (e.g., species abundance distributions), Mantel cor-
relation tests, distance-based regressions (MRM, GDM)
and multivariate statistics such as constrained ordination
(e.g., CCA and RDA) and posterior variation partitioning.
However, none of these methods are perfect and inferring
processes from empirical data is still a challenge. Thus,
while we advocate that the estimation of scaling coefficients
is necessary to more accurately infer process, this will still
critically depend on the use of appropriate statistical meth-
ods. New methods, such as joint species distribution mod-
els (e.g., Ovaskainen et al. 2017), seem promising. But
these will almost certainly still require a scale-explicit
approach to appropriately infer potential processes.
Overall, our study is a proof-of-concept towards a

more scale-integrative approach in metacommunity ecol-
ogy, but is certainly only a first step. The field of meta-
community ecology has been fostered by key conceptual
advances, particularly the recognition that a number of
processes, including those as seemingly diametrically

FIG. 4. Scaling effects (sampling extent and grain) on the inference of community assembly processes: niche selection, dispersal
limitation, and ecological drift. Panels b and d show ternary plots representing the relative importance of the community assembly
processes inferred (1) in different studies reviewed in Cottenie (2005) and Soininen (2014) and (2) from one simulated community
sampled over different spatial extents (b; model parameters: range = 25; rniche = 60; rdispersal = 0.3) and at different spatial grains
(d; model parameters: range = 50; rniche = 50; rdispersal = 1.0).
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opposed as niche and neutral processes, play out simulta-
neously in metacommunities (Gravel et al. 2006, Vellend
2010, 2016, Fournier et al. 2017, Leibold and Chase
2017). However, available analytical methodologies to
study and infer community assembly processes are not
keeping pace and hamper our ability to synthesize knowl-
edge. We now know that using only environment and
space to infer complex and interacting assembly processes
is not enough and that we need to integrate spatial scale,
time, species covariance, and better descriptors of connec-
tivity to fully understand community assembly mecha-
nisms. Here, we have more explicitly described how the
issue of spatial scale (both grain and extent) is critical to
infer and understand community assembly processes, and
we provide guidelines on how we can incorporate spatial
scale into process inference.
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